Hidden logistic linear regression for support vector machine based phone verification
نویسندگان
چکیده
Phone verification approach to mispronunciation detection using a combination of Neural Network (NN) and Support Vector Machine (SVM) has been shown to yield improved verification performance. This approach uses a NN to predict the HMM state posterior probabilities. The average posterior probability vectors computed over each phone segment are used as input features to a SVM back-end to generate the final verification scores. In this paper, a novel Hidden Logistic Feature (HLF) for SVM back-end is proposed, where the sigmoid activations from the hidden layer that contain rich information of the NN is used instead of the output layer and the generation of HLFs can be interpreted as a Hidden Logistic Linear Regression process. Experiments on the TIMIT database show that the proposed HLF gives the lowest Equal Error Rate of 3.63%.
منابع مشابه
Machine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملSupport vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملComparison of classic regression methods with neural network and support vector machine in classifying groundwater resources
In the present era, classification of data is one of the most important issues in various sciences in order to detect and predict events. In statistics, the traditional view of these classifications will be based on classic methods and statistical models such as logistic regression. In the present era, known as the era of explosion of information, in most cases, we are faced with data that c...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملSpeaker Identification and Verification Using Support Vector Machines and Sparse Kernel Logistic Regression
In this paper we investigate two discriminative classification approaches for frame-based speaker identification and verification, namely Support Vector Machine (SVM) and Sparse Kernel Logistic Regression (SKLR). SVMs have already shown good results in regression and classification in several fields of pattern recognition as well as in continuous speech recognition. While the non-probabilistic ...
متن کامل